Summary of Continuous Distributions

Uniform
a = lowest/minimum value
b = highest/maximum value
\mu=\frac{a+b}{2}
\sigma=\sqrt{\frac{\left(b-a\right)^2}{12}}
X ~ U(a,b)
Exponential
decay parameter: m\:or\:\lambda=\frac{1}{\mu}
average time: \mu=\sigma
X time ≥ 0
X ~ Exp(m)
probability formula: f\left(x\right)=me^{-mx}
Normal
X\:\sim\:N\left(\mu,\sigma\right)
(calculations covered elsewhere, link to be added )
z=\frac{x-\mu}{\sigma}
Previous Article
Next Article

Leave a Reply

Your email address will not be published. Required fields are marked *