Complex Numbers

Definitions

$\diamond i^{2}=-1$, so $i=\sqrt{-1}$. Thus $\sqrt{-b}=i \sqrt{b}$, if b is a positive number.
\diamond An imaginary number is a number which is the square root of a negative number.
\diamond A number of the form " $a+b i$ " is called a complex number, where $a \& b$ are real numbers. We call \mathbf{a} the real part \& \mathbf{b} the imaginary part.
\diamond Note the set of Real Numbers are a subset of the Complex Numbers.
\diamond The complex number $\mathrm{a}-\mathrm{b} i$ is called the complex conjugate of $\mathrm{a}+\mathrm{b} i$.
\diamond Two complex numbers are equal if the real parts and the imaginary parts are equal.

Examples:

$$
\sqrt{-9}=3 i
$$

$3+2 i, 4+0 i=4$ both are Complex Numbers.
$4+3 i \& 4-3 i$ are complex conjugates.
$\mathrm{a}+\mathrm{b} i=3-4 i$ if $\mathrm{a}=3$ and $\mathrm{b}=-4$
$i^{3}=i^{2+1}=i^{2} i=(-1)^{\star} i=-i$
$i^{14}=i^{2^{\star} 7}=(-1)^{7}=-1$
One of the reasons for studying complex numbers is when solving some polynomials they come up as the solution.

Conjugate Pairs Theorem: If $\mathrm{P}(\mathrm{x})=0$ is a polynomial equation with real or complex coefficients and the complex number $a+b i(b$ not $=0)$ is a root, then so is $a-b i$.

NOTES:

- When solving polynomials complex numbers come in pairs.
- Linear Equations cannot have a complex root.
- Quadratic have 2 complex roots, 2 real roots or one double real root, since a quadratic must have 2 roots.

We will see this when we solve Quadratic Equations with methods other than Factoring.

