## Introduction to Rational Expressions

A rational expression is an expression that can be written in the form $\frac{P}{Q}$, where $\mathrm{P} \& \mathrm{Q}$ are polynomials \& $Q$ does not equal zero.

A rational expression is evaluated at a value(s) by substituting into the expression for the appropriate variable(s). Remember, the fraction line means divide.

## Example:

Evaluate at $\mathrm{x}=2: \frac{x+4}{x+2} \xrightarrow{\text { replace_x_with_2 }} \xrightarrow[(2)+2]{(2)+4} \xrightarrow{\text { Add }} \xrightarrow{\text { Always_Simplify! }} \frac{3 * 2}{2 * 2} \rightarrow \frac{2}{2}$
A rational expression is undefined when $Q$ equals 0 , or we say the rational expression is undefined at the values of the variable that cause $Q$ to equal 0 . The domain of the expression is those values that do not cause $Q$ to equal 0 .

## Examples:

$\frac{x+4}{x+2}$ In this example $Q=x+2$, so if $x+2$ equals 0 , then the rational expression will be undefined. So if $x=-2$, the rational expression will have 0 in the denominator and so will be undefined. Thus the domain of this rational expression is $(-\infty,-2) \cup(-2, \infty)$ or $\{x \mid x$ is a Real Number and $x \neq-2$ ).
$\frac{3}{x^{2}+12}$ In this example the denominator $x^{2}+12$ equals 0 only when $x^{2}=-12$, which does not happen with Real Numbers. So the Domain is All Real Numbers.
$\frac{x^{2}+3}{x-3}$ In this example the denominator $x-3$ equals 0 when $x=3$. So the Domain is $\{x \mid$ $x$ is a Real Number and $x \neq 3\}$.

