Quadratic in Form

Equations that are **Quadratic in Form** are any equation that can be written as $au^2 + bu + c = 0$, where u is a variable expression.

Examples

 $3(2x + 5)^{2} + 7(2x + 5) + 2 = 0$ $3u^{2} + 7u + 2 = 0$ (3u + 1)(u + 2) = 0 $u = -\frac{1}{3}$ u = -2 $-\frac{1}{3} = 2x + 5 \rightarrow -\frac{16}{3} = 2x \rightarrow -\frac{8}{3} = x$ Or $-2 = 2x + 5 \rightarrow -7 = 2x \rightarrow -\frac{7}{2} = x$ $x = -\frac{8}{3} \text{ and } x = -\frac{7}{2}.$

Let u = 2x + 5Set each linear factor equal to zero.

Substitute back in u = 2x + 5

$x^{4} + 10 = 7x^{2}$ $x^{4} - 7x^{2} + 10 = 0$ $u^{2} - 7u + 10 = 0$	
(u-5)(u-2) = 0	
u – 5 = 0	u – 2 = 0
u = 5	u = 2
$x^2 = 5$	$x^2 = 2$
$\sqrt{x^2} = \pm \sqrt{5}$	$\sqrt{x^2} = \pm \sqrt{2}$
$x = \pm \sqrt{2}, x = \pm \sqrt{5}$	

Let $u = x^2$

Set each linear factor equal to zero.

Substitute back in $u = x^2$ Take the square root of both sides.

u = 3	$u + 2 = 0$ $u = -2$ $\frac{b-5}{6} = -2$	Let $u = \frac{b-5}{6}$ Set each linear factor equal to zero. Substitute back in $u = \frac{b-5}{6}$
$u^{2} - 3u + 2 = 0$ (u - 1)(u - 2) = 0	Let $u = x^{\frac{1}{4}}$, becaus u - 2 = 0	be $\frac{1}{4} * 2 = \frac{1}{2}$, remembering exponent rules. Set each linear factor equal to zero.
$x^{\frac{1}{4}} = 1$	u = 2 $x^{\frac{1}{4}} = 2$ x = 2 ⁴ x = 16	Substitute back in $u = x^{\frac{1}{4}}$ Raise both side to the 4 th power.
$(2y + 4)^{2} = 8y + 23$ $(2y + 4)^{2} = 8y + 16$ $u^{2} = 4u + 7$ $u^{2} - 4u - 7 = 0$		4, since that is squared. Change form. 4) ² = 4(2y + 4) + 7 ot factor, use Quadratic Formula.
$u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $u = \frac{-(-4) \pm \sqrt{(-4)^2}}{2(1)}$ $u = \frac{4 \pm \sqrt{16 + 28}}{2}$ $u = \frac{4 \pm \sqrt{44}}{2}$ $u = \frac{4 \pm 2\sqrt{11}}{2}$ $u = 2 \pm \sqrt{11}$	$a = 1, b = -4$ $\overline{-4(1)(-7)}$ Simp	lify.