Quadratic in Form

Equations that are Quadratic in Form are any equation that can be written as au ${ }^{2}+\mathrm{bu}$ $+c=0$, where u is a variable expression.

Examples

$3(2 x+5)^{2}+7(2 x+5)+2=0 \quad$ Let $u=2 x+5$
$3 u^{2}+7 u+2=0$
$(3 u+1)(u+2)=0$
Set each linear factor equal to zero.
$3 u+1=0$
$u+2=0$
$u=-\frac{1}{3} \quad u=-2$
Substitute back in $u=2 x+5$
$-\frac{1}{3}=2 x+5 \rightarrow-\frac{16}{3}=2 x \rightarrow-\frac{8}{3}=x$
Or
$-2=2 x+5 \rightarrow-7=2 x \rightarrow-\frac{7}{2}=x$
$x=-\frac{8}{3}$ and $x=-\frac{7}{2}$.
$x^{4}+10=7 x^{2}$
$x^{4}-7 x^{2}+10=0 \quad$ Let $u=x^{2}$
$u^{2}-7 u+10=0$
$(u-5)(u-2)=0$
Set each linear factor equal to zero.
$u-5=0$
$u-2=0$
$\mathrm{u}=5$
$\mathrm{u}=2$
Substitute back in $u=x^{2}$
$\mathrm{x}^{2}=5$
$x^{2}=2$
Take the square root of both sides.
$x= \pm \sqrt{2}, x= \pm \sqrt{5}$
$\left(\frac{b-5}{6}\right)^{2}-\left(\frac{b-5}{6}\right)-6=0 \quad$ Let $u=\frac{b-5}{6}$
$u^{2}-u-6=0$
$(u-3)(u+2)=0$
$u-3=0$
$u+2=0$
$\mathrm{u}=3$
$u=-2$
$\frac{b-5}{6}=3$
$\frac{b-5}{6}=-2$
$b-5=18$
$b-5=-12$
b $=23$
$b=-7$

Set each linear factor equal to zero.
Substitute back in $u=\frac{b-5}{6}$
$x^{\frac{1}{2}}-3 x^{\frac{1}{4}}+2=0 \quad$ Let $u=x^{\frac{1}{4}}$, because $\frac{1}{4} * 2=\frac{1}{2}$, remembering exponent rules.
$u^{2}-3 u+2=0$
$(u-1)(u-2)=0$
Set each linear factor equal to zero.
$u-1=0$
$u-2=0$
$u=1$
$u=2$
$x^{\frac{1}{4}}=1$
$x^{\frac{1}{4}}=2$
$x=1^{4} \quad x=2^{4}$
$x=1$
$x=16$
Substitute back in $u=x^{\frac{1}{4}}$
Raise both side to the $4^{\text {th }}$ power.
$(2 y+4)^{2}=8 y+23 \quad$ Let $u=2 y+4$, since that is squared. Change form.
$(2 y+4)^{2}=8 y+16+7 \quad \rightarrow \quad(2 y+4)^{2}=4(2 y+4)+7$
$u^{2}=4 u+7$
$u^{2}-4 u-7=0$
This does not factor, use Quadratic Formula.
$u=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad a=1, b=-4, c=-7$
$u=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-7)}}{2(1)} \quad$ Simplify.
$u=\frac{4 \pm \sqrt{16+28}}{2}$
$u=\frac{4 \pm \sqrt{44}}{2}$
$u=\frac{4 \pm 2 \sqrt{11}}{2}$
Reduce.
$u=2 \pm \sqrt{11}$

