## Solving Quadratic Equations

## Factor

If it is easy to factor do so, otherwise try one of the other methods.

## Solving by Factoring

1.) Write the equation in Standard Form so that one side equals $0, a x^{2}+b x+c=0$.
2.) Factor completely. All linear factors must be found. (See Polynomial Factoring)
3.) Set each linear factor to zero, contains 1 variable to the $1^{\text {st }}$ degree.
4.) Solve the resulting equations for the variable.
a. The solution to each factor is also a solution to the polynomial.
5.) Check all solutions in the original equation.
a. If solving a word problem, does the value make sense?

## Example 1

$0=-4(x-6)(x+4) \quad$ Steps 1 and 2 are already done.
$0=x-6$ or $0=x+4$ Step 3: only linear factors are set to $0 .-4$ is not a linear factor, and it can never be 0 ! So in order for the polynomial to equal zero, either of the 2 linear factors must be zero.
$6=x$ or $-4=x \quad$ Step 4: Solve to find values of the variable to cause the polynomial to be zero.
$0=-4([6]-6)([6]+4)$ or $0=-4([-4]-6)([-4]+4) \quad$ Step 5: Check each value.
$0=-4(0)(10) \quad$ or $0=-4(-10)(0) \quad$ Both of these are true.

## Example 2

$x^{2}-x+6=0$
$(x-3)(x+2)=0$
$x-3=0$ or $x+2=0$
$x=3$ or $x=-2$

## Example 3

$7 x^{2}=4 x$
$7 x^{2}-4 x=0$
$x(7 x-4)=0$
$x=0$ or $7 x-4=0$
$x=0$ or $7 x=4$
$x=0$ or $x=\frac{4}{7}$

## Example 4

$(x+10)(x+5)=6$
$x^{2}+10 x+5 x+50=6$
$x^{2}+15 x+44=0$
$(x+11)(x+4)=0$
$x+11=0$ of $x+4=0$
$x=-11$ or $x=-4$

Step 1: Completed
Step 2: Factor
Step 3: Set Linear Factors $=0$.
Step 4: Solve

Step 1: Set the equation into Standard Form
Step 2: Factor
Step 3: Set Linear Factors $=0$. Be sure to go through the steps for solving Linear Equations to be sure all of your signs are correct.

Step 4: Solve

Step 1: Set equation into Standard Form, if it is factored, but not equal to zero, it needs to be multiplied out, simplified \& set equal to 0 , before it can be factored.

Step 2: Factor.
Step 3: Set Linear Factors $=0$.
Step 4: Solve.

You really should do Step 5, check your solution...

