Quadratic Equations

A Quadratic Equation in <u>standard form</u> is $ax^2 + bx + c = 0$, where a, b, and c are Real Numbers, with $a \neq 0$.

The number and type of solutions for a quadratic equation will vary based on the

<u>discriminant</u>, $b^2 - 4ac$. Remember the equation MUST be in standard form!

- 1.) If $b^2 4ac = 0$, there will be **one unique solution**, it is called a double root.
 - a. The quadratic equation will factor as a squared binomial.
- 2.) If b² 4ac > 0, and is a perfect square, there will be **two unique rational solutions.**
 - a. The quadratic equation might factor with integers.
- 3.) If $b^2 4ac > 0$, but not a perfect square, there will be **two unique real solutions**.
 - a. The quadratic equation will not factor with integers.
- If b² 4ac < 0, there will be two unique complex solutions & they will be complex conjugates.
 - a. The quadratic equation will not factor.

Examples:

- \succ 6x² − 13x + 2 = 0 \rightarrow a = 6, b = -13, c = 2
 - Discriminant = $b^2 4ac \rightarrow (-13)^2 4(6)(2) \rightarrow 169 48 \rightarrow 121 \rightarrow (11)^2$, this fits case 2, so there are 2 rational solutions.
- > $x^2 + 4x 29 = 0$ → a = 1, b = 4, c = -29 →
 - Discriminant = $b^2 4ac \rightarrow (4)^2 4(1)(-29) \rightarrow 16 + 116 \rightarrow 132$, this fits case 3, so there are 2 real solutions.
- > $x^2 + 2x + 1 = 0$ → a = 1, b = 2, c = 1
 - Discriminant = $b^2 4ac \rightarrow (2)^2 4(1)(1) \rightarrow 4 4 \rightarrow 0$, this fits case 1, so there is 1 unique solution.
- > $x^2 + 2x + 5 = 0$ → a = 1, b = 2, c = 5
 - Discriminant = $b^2 4ac \rightarrow (2)^2 4(1)(5) \rightarrow 4 20 \rightarrow -16$, this fits case 4, so there are 2 complex solutions.