Quadratic Equations

A Quadratic Equation in standard form is $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, where a, b, and c are Real Numbers, with $\mathrm{a} \neq 0$.

The number and type of solutions for a quadratic equation will vary based on the discriminant, $\mathrm{b}^{2}-4 \mathrm{ac}$. Remember the equation MUST be in standard form!
1.) If $b^{2}-4 a c=0$, there will be one unique solution, it is called a double root.
a. The quadratic equation will factor as a squared binomial.
2.) If $b^{2}-4 a c>0$, and is a perfect square, there will be two unique rational solutions.
a. The quadratic equation might factor with integers.
3.) If $b^{2}-4 a c>0$, but not a perfect square, there will be two unique real solutions.
a. The quadratic equation will not factor with integers.
4.) If $b^{2}-4 a c<0$, there will be two unique complex solutions $\&$ they will be complex conjugates.
a. The quadratic equation will not factor.

Examples:

> $6 x^{2}-13 x+2=0 \rightarrow a=6, b=-13, c=2$

- Discriminant $=\mathrm{b}^{2}-4 \mathrm{ac} \rightarrow(-13)^{2}-4(6)(2) \rightarrow 169-48 \rightarrow 121 \rightarrow(11)^{2}$, this fits case 2 , so there are 2 rational solutions.
$\rightarrow \mathrm{x}^{2}+4 \mathrm{x}-29=0 \rightarrow \mathrm{a}=1, \mathrm{~b}=4, \mathrm{c}=-29 \rightarrow$
- Discriminant $=\mathrm{b}^{2}-4 \mathrm{ac} \rightarrow(4)^{2}-4(1)(-29) \rightarrow 16+116 \rightarrow 132$, this fits case 3 , so there are 2 real solutions.
$>\mathrm{x}^{2}+2 \mathrm{x}+1=0 \rightarrow \mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=1$
- Discriminant $=b^{2}-4 a c \rightarrow(2)^{2}-4(1)(1) \rightarrow 4-4 \rightarrow 0$, this fits case 1 , so there is 1 unique solution.
$>\mathrm{x}^{2}+2 \mathrm{x}+5=0 \rightarrow \mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=5$
- Discriminant $=b^{2}-4 \mathrm{ac} \rightarrow(2)^{2}-4(1)(5) \rightarrow 4-20 \rightarrow-16$, this fits case 4 , so there are 2 complex solutions.

