Methods for Solving Quadratic Equations

Complete the Square

1.) Write the equation with the x terms on one side \& the constant term on the other, $a x^{2}+b x=-c$
2.) Divide through by a, $x^{2}+\frac{b}{a} x=-\frac{c}{a}$
3.) Add $\left(\frac{1}{2} \cdot \frac{b}{a}\right)^{2}$ to both sides of the equation to complete the square
4.) Now you can factor the left side using the perfect square trinomial formula (see Special Factoring withPolynomials), $\left(x+\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2}$
5.) Take the square root of both sides
6.) Solve for x
7.) Check solutions, some may not work...

Examples:

1.) $y^{2}+20 y=0 \rightarrow a=1, b=20$
2.) $\left(\frac{1}{2} \bullet \frac{b}{a}\right)^{2} \rightarrow\left(\frac{1}{2} \bullet \frac{20}{1}\right)^{2} \rightarrow(10)^{2}$
3.) add $(10)^{2}$ to both sides of the equation $\rightarrow y^{2}+20 y+(10)^{2}=(10)^{2}$ (Note, I left it in the form I did to remind me that I now have a perfect square trinomial on the left.) \rightarrow
4.) $(y+10)^{2}=(10)^{2} \rightarrow$
5.) $\sqrt{(y+10)^{2}}= \pm \sqrt{(10)^{2}} \rightarrow y+10= \pm 10 \rightarrow$
6.) $y=-10 \pm 10 \rightarrow y=0 \& y=-20$
1.) $m^{2}-12 m+33=0 \rightarrow m^{2}-12 m=-33 \rightarrow$
2.) $\left(\frac{1}{2} \bullet \frac{b}{a}\right)^{2} \rightarrow\left(\frac{1}{2} \bullet \frac{-12}{1}\right)^{2} \rightarrow(-6)^{2}$
3.) add $(-6)^{2}$ to both sides of the equation, I leave in the $(-)$ to remind me that is what I need since the b term is negative.
4.) $m^{2}-12 m+(-6)^{2}=-33+(-6)^{2} \rightarrow(m-6)^{2}=-33+36 \rightarrow$
5.) $(m-6)^{2}=3 \rightarrow \sqrt{(m-6)^{2}}= \pm \sqrt{3} \rightarrow$
6.) $m-6= \pm \sqrt{3} \rightarrow m=6 \pm \sqrt{3}$

From the Complete the Square Method Step 4 above, we get the Quadratic Formula:

$$
\begin{aligned}
& \left(x+\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2} \xrightarrow{\text { Add fractionson Right Hand Side }}\left(x+\frac{b}{2 a}\right)^{2}=\frac{-4 a c+b^{2}}{4 a^{2}} \\
& \xrightarrow[\text { Now take Square Root of both sides }]{ } x+\frac{b}{2 a}= \pm \sqrt{\frac{-4 a c+b^{2}}{4 a^{2}}} \xrightarrow[\text { And Rationalize }]{\text { Now x term by iself }} \\
& x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \xrightarrow{\text { Combine }} x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

