AC Method or X Method
 Also called Factor by Grouping

To Factor $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ using this method, after GCF has been removed from expression, and a is not negative:

1) Find ac
2) Write all factors of the product found in Step 1.
3) Find the sum of each pair of factors found in Step 2.
a. If c is positive $\& b$ is positive then both factors are positive
b. If c is positive $\& b$ is negative then both factors are negative
c. If c is negative, then use one positive $\&$ one negative to get the sum (difference)
4) Choose the pair from Step 3 whose sum is b.
5) Write $b x=$ pair from Step 4.
6) Replace bx in the expression with the sum found in Step 5, we now have 4 terms.
7) Find the GCF of the first pair in the expression \& the GCF of the second pair of the expression
8) Factor out the GCF from the first pair \& also factor out the GCF from the second pair
9) If you have a binomial in each of these new terms, that is the GCF \& can be factored out, as in Step 8.
a. If you don't have a GCF in Step 9, try factoring out a negative in step 7.
10)Check your work using FOIL.

This method is also described as the X Method, because you can draw an X , placing the product ac in the top, the b in the bottom, and the numbers chosen in part 4 above in the sides. Some people find using the X easier to focus and are then able to skip steps. I feel you should use whatever method
 is easiest for you for factoring.

Example 1: $15 \mathrm{x}^{2}+11 \mathrm{x}+2$

1) $15 * 2=30$
2) $30=1$ * $30=2$ * $15=3$ * $10=5$ * 6
3) $1+30=31 ; 2+15=17 ; 3+10=13 ; 5+6=11$
4) $5+6=11$
5) $11 x=5 x+6 x$
6) $15 x^{2}+5 x+6 x+2$

7) $5 x^{*} 3 x+5 x^{*} 1+\underline{2}^{*} 3 x+\underline{2}^{*} 1$
8) $5 x(3 x+1)+\underline{2}(3 x+1)$
9) Note that $(3 x+1)$ is in both terms so this is the GCF \& can be factored: $(5 x+2)(3 x+$ 1)
10)Check using FOIL $=F+O+I+L=5 x * 3 x+5 x^{*} 1+2 * 3 x+2 * 1=15 x^{2}+5 x+6 x+2=$ $15 x^{2}+11 x+2$

Example 2: $10 \mathrm{x}^{2}-23 \mathrm{x}+12$

1) $10 * 12=120$
2) $120=1 * 120=2 * 60=3 * 40=4 * 30=5 * 24=6 * 20=8 * 15=10 * 12$
3) $-1+-120=-121 ;-2+-60=-62 ;-3+-40=-43 ;-4+-30=-34 ;-5+-24$ $=-29 ;-6+-20=-26 ;-8+-15=-23 ;-10+-12=-22$
4) $-8+-15=-23$
5) $-23 x=-8 x+-15 x$
6) $10 x^{2}+-8 x+-15 x+12$
7) $2 x^{*} 5 x+2 x^{*}(-4)+\underline{3}^{*}(-5 x)+\underline{3}^{*} 4$
8) $2 x(5 x+-4)+\underline{3}(-5 x+4)$

9) $(5 x+-4) \neq(-5 x+4)$
a. Back at Step 7, we should have factored -3 out of the second pair (remember + $\left.12=-3^{*}-4\right): 2 x^{*} 5 x+2 x^{*}(-4)+\underline{-3}{ }^{*}(5 x)+\underline{-3}{ }^{*}(-4)$
i. $2 x(5 x+-4)+\underline{-3}(5 x+-4)$
ii. Now $(5 x+-4)$ is in both terms \& can be factored out: $(2 x+-3)(5 x+-4)$
10)Check using FOIL: $10 x^{2}-23 x+12$

Example 3: $4 \mathrm{x}^{2}-\mathbf{8 x}-\mathbf{2 1}$

1) $4 * 21=84$
2) $84=1 * 84=2 * 42=3 * 28=4 * 21=6 * 14=7 * 12$
3) $C=-21 \& b=-8$, so we need the difference of the numbers to equal -8 (the bigger number is negative).
а. $1+-84=-83 ; 2+-42=-40 ; 3+-28=-25 ; 4+-21=-17 ; 6+-14=-8 ; 7+-12=-5$
4) $6+-14=-8$
5) $-8 x=6 x+-14 x$
6) $4 x^{2}+6 x+-14 x-21$
7) $2 x^{*} 2 x+2 x^{*} 3+-7^{*} 2 x+-7^{*} 3$
8) $2 x(2 x+3)+-7(2 x+3)$
9) Now GCF is $(2 x+3)$: $(2 x+-7)(2 x+3)$
10)Check using FOIL: $4 x^{2}-8 x-21$

