Special Products

For Multiplying Polynomials

Note: a \& b below represent terms, not just numbers.
The FOIL(First Outer Inner Last) Method is used when multiplying two binomials.
$(a+b)(c+d)=a c+a d+b c+b d$
Firsts are a * c
Outers are a*d
Inners are $b^{*} c$
Lasts are $b^{*} d$
$\underline{F}+\underline{\mathbf{O}}+\underline{\mathbf{I}}+\underline{\mathbf{L}} \rightarrow$ FOIL
We can check this by applying the rules for Multiplying Polynomials.
$(a+b)(c+d) \quad$ Distribute
$a(c+d)+b(c+d) \quad$ Distribute AGAIN!
$a c+a d+b c+b d \quad$ If we were working with a specific problem we could now Simplify.

Examples:

$(3 x+2)(x-1)$
Firsts are $3 x \& x \rightarrow 3 x^{2}$
Outers are $3 x \&-1 \rightarrow-3 x$
Inners are $2 \& x \rightarrow 2 x$
Lasts are $2 \&-1 \rightarrow-2$
Now we can just add them together
$3 x^{2}+-3 x+2 x-2 \rightarrow 3 x^{2}+-x-2$ or $3 x^{2}-x-2$
$(4 x-1)(2 x-2)$
$8 x^{2}-8 x-2 x+2$
$\underline{F}+\underline{\mathbf{O}}+\underline{\mathbf{I}}+\underline{\mathbf{L}}$
$8 x^{2}-10 x+2$
FOIL

Squaring a Binomial $=$ Perfect Square Trinomial(factoring section)

$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
We can check both of these formulae by applying the FOIL Method from above.

$$
\begin{aligned}
& (a+b)^{2} \rightarrow(a+b)(a+b) \rightarrow a^{2}+a b+a b+b^{2} \rightarrow a^{2}+2 a b+b^{2} \\
& (a-b)^{2} \rightarrow(a-b)(a-b) \rightarrow a^{2}-a b-a b+(-b)^{2} \rightarrow a^{2}-2 a b+b^{2}-
\end{aligned}
$$

Examples:

$(3 \mathrm{x}+7)^{2} \rightarrow(3 \mathrm{x})^{2}+2(3 \mathrm{x})(7)+(7)^{2} \rightarrow 9 \mathrm{x}^{2}+42 \mathrm{x}+49$
$(5 y-3)^{2} \rightarrow(5 y)^{2}-2(5 y)(3)+(3)^{2} \rightarrow 25 y^{2}-30 y+9$

Product of a Sum \& Difference (Product of Conjugates) $=$ Difference of Two Squares (Factoring Section)
$(a+b)(a-b)=a^{2}-b^{2} \quad a-b$ is the conjugate of $a+b$, since the values are the same but the sign in between is opposite.

Again, we can check this with the FOIL Method.

$$
(a+b)(a-b) \rightarrow a^{2}-a b+a b-b^{2} \rightarrow a^{2}-b^{2}
$$

Example:

$$
(2 x+3)(2 x-3) \rightarrow(2 x)^{2}-(3)^{2} \rightarrow 4 x^{2}-9
$$

