Factoring Quadratic Expressions
 $$
a x^{2}+b x+c
$$

Leading Coefficient $a=1, x^{2}+b x+c=(x+s)(x+u)$:
1.) List factors of the last term, c.
2.) Sum each pair of factors, s \& u.
3.) If the sum $s+u=b$, then done
4.) write the factors.

Example 1: $z^{2}+2 z-24$

1) $c=24,24=1^{*} 24=2^{*} 12=3^{*} 8=4^{*} 6$
a. I listed as I did above so that I could be sure that I listed all the factors.
2) $1+24=25,2+12=14,3+8=11,4+6=10$
3) $(z+6)(z-4)$

Example 2: $\mathrm{x}^{2}+7 \mathrm{x}+12$

1) $c=12,24=1^{*} 12=2^{*} 6=3^{*} 4$
2) $1+12=13,2+6=8,3+4=7$
3) $(x+3)(x+4)$

Example 3: $x^{2}-x-6$

1) $c=6,6=1 * 6=2 * 3$, keep in mind we need a $+\&-$ factor, because of -6 !
2) Since we want -1 for our coefficient we will subtract factors
a. $1-6=-5,2-3=-1,3-2=1$
3) $(x-3)(x+2)$

Example 4: $x^{2}-x+6$

1) $c=6,6=1 * 6=2 * 3$, keep in mind we need both + factors, because of +6 !
2) Since we want - 1 for our coefficient and our factors need to have same sign, we are done! $2+3=5 \& 1+6=7$ no matter which signs we use!
3) This expression is called prime, since it cannot be factored.

Tips: only work when a is positive, more involved when a $\neq 1$:

1) When c is positive, its factors will have the same sign \& the sum of the factors is b.
a. If b is positive, the factors of c will both be positive

$$
x^{2}+b x+c=(x+\ldots)(x+\ldots)
$$

b. If b is negative, the factors of c will both be negative

$$
x^{2}-b x+c=(x-\ldots)(x-\ldots)
$$

2) When c is negative, its factors will have opposite signs \& the difference of the factors is b.
a. If b is positive, the larger factor is positive.

$$
x^{2}+b x-c=(x+\text { larger factor })(x-\ldots)
$$

b. If b is negative, the larger factor is negative.

$$
x^{2}-b x-c=(x-\operatorname{larger} \text { factor })(x+\ldots)
$$

Leading Coefficient $a \neq 1, a x^{2}+b x+c=(r x+s)(t x+u)$ "Guess \& Test" Method (some instructors only allow this method)
1.) List the factors of the first term and the factors of the last term.
2.) Make all the necessary combination of products \& sums of the factors to see if any equal $b, s t+r u=b$.
3.) If one combination works, then done, write the factors.
a) Keep in mind the tips above.

Example 1: $8 m^{2} n^{2}-10 m n+3$
1.) $8=1 * 8=2 * 4 ; 3=1 * 3$
2.) $1 * 1+8 * 3=25 ; 8 * 1+1 * 3=11 ; 2 * 1+4 * 3=14 ; 2 * 3+1 * 4=10$
3.) $(4 m n-3)(2 m n-1)$

Example 2: $2 x^{2}+13 x-7$
1.) $2=1^{*} 2 ;-7=-1^{*} 7=1^{*}(-7)$
2.) $1^{*}(-1)+2^{*} 7=13 ; 2^{*}(-1)+1^{*} 7=5 ; 1^{*} 1+2^{*}(-7)=-13 ; 2^{*} 1+1^{*}(-7)=-5$
3.) $(x+7)(2 x-1)$

AC Method also called X Method or Grouping (for more details \& examples see X Method)
1.) Find 2 numbers whose product is ac \& sum is b
2.) Rewrite bx using the factors from 1.)
3.) Factor by grouping (using 4 term method in Factoring Basics)

