Combined Variation

Often in real-life situations, one variable varies as a combination of variables, may include any combination of all previously mentioned variations.

Example

The force needed to keep a car from skidding on a curve varies jointly with the weight of the car and the speed squared, and inversely with the radius of the curve. If 242 pounds of force would keep a 2000 pound car from skidding on a curve with a radius of 500 feet at 30 mph , what force would keep the same car from skidding on a curve with a radius of 750 feet going 50 mph ?

$$
k w s^{2}
$$

Continued: If $f=242$ when $w=2000, s=30$, and $r=500$, find f when $w=2000, s=50$, and $r=750$.
Find the constant of proportionality:

$$
\begin{gathered}
f=\frac{k w s^{2}}{r} 242=\frac{k(2000)(30)^{2}}{500} \\
242=\frac{k(4)(900)}{1} \\
\frac{242}{3600}=k \\
0.067 \overline{2}=k
\end{gathered}
$$

Continued: find f when $w=2000$, $s=50$, and $r=750$.

Now find f :

$$
\begin{gathered}
f=\frac{k w s^{2}}{r} \\
f=\frac{.067 \overline{2}(2000)(50)^{2}}{750} \\
f=\frac{.067 \overline{2}(8)(2500)}{3} \\
f=448.1 \ldots
\end{gathered}
$$

The amount of force required to keep the car from skidding is approximately 448.1 pounds.

